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Preface 

This article describes a method of developing an index of risk. This indexer combines 

metrics to portray an overall evaluation and ranking of multiple individual subjects 

suitable for a graphic display. I developed an early version of this indexer for 

evaluation of common stock investment risks between 1979 and 1984. I’ve used it in a 

variety of contexts, financial and otherwise, such as measures of advertising 

effectiveness. The basic method of combination is the distance theorem of Pythagoras. 

In creating this current evolution, my motive is to enable visualization of complex 

risk/reward tradeoffs, particularly among mortgage loans. With this method, we can 

graphically compare a loan, which is a risky asset, and the associated price (the return 

or interest rate), with another risky asset and its price, and we can calculate which has 

the better value for us.  

Thus we can have a graphic portrayal of the tradeoff between risk and reward for 

mortgages. We can compose a horizontal axis of risk, and map it to a vertical axis of 

reward. We can compare two loans and measure, rather than subjectively estimate, 

which better trades risk for reward. We can compare an individual loan with our 

portfolio. We can compare our portfolio with the industry generally. We can balance the 

risks versus rewards and estimate whether and how much we should competitively 

adjust rates, marketing efforts and underwriting policies. We can choose how much risk 

we might exchange for promise of greater value. 

Fundamentally, this indexer is a mathematical manipulation. While we might refer to 

the result as a “risk index”, the manipulation has no inherent predictive capacity. Even 

so, the resulting index is suitable for statistical study. The index is a composite 

summary of the statistical, predictive or other character that may (or may not) be 

present in the component metrics. A statistical study might show that a particular 

resulting index does indeed predict well, but we don’t claim that in this article.  

In this article, I’ll show the general formulation and explain how it works by developing 

a risk index using LTV (loan to value) and FICO (credit risk score) as an example. I’ll 

describe the process of transforming the metrics.  I’ll present an example of application 

with a mortgage portfolio. 
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General Formulation 

Here we show briefly the formulation of the risk index before we explain what it means.  

We could use any number of contributing metrics to calculate a single distance metric d 

for a loan i. 

d(i,y1,y2,y3,…,yn) = sqrt( (y1-1)^2 + (y2-1)^2 + (y3-1)^2 + … + (yn-1)^2 ) 

where y1, y2, y3, …, yn are transformed metrics (transformation will be described in the 

next section), such that 0 is the least risky value of the metric, and 1 is the most risky 

value. The distance metric is the Pythagorean distance of the loan from the point of 

supreme risk SR= (1,1,1,…,1).  

Then the risk index for the loan is 

yd(i,y,n) = 1 – d(i,y1,y2,y3,…,yn) / sqrt(n) 

 

Developing and Explaining a Risk Index 

Let us keep in mind that, in this document, when we use the word “risk”, we mean 

“our perception of risk.” The “risk” we work with, in this document, is not necessarily a 

conclusion based on application of sophisticated models, nor careful study, nor 

measurement of pertinent facts. Our risk index combines metrics, which may derive 

from sophisticated models, careful study, measurement of facts, rule of thumb, 

seasoned judgment, foolish enthusiasm, spurious significance, outright error, or any 

combination of these. 

Suppose we have a set of loans, and for each loan we have a LTV metric and a FICO 

metric. We use these metrics hypothetically to illustrate the process. We could use some 

other metrics. We could use more than two metrics. 

We want to know which loan is the riskiest and which is the least risky, and for any two 

loans in the set, we want to know which is riskier. We want our risk index to have 

transitivity. If A is riskier than B and B is riskier than C, then transitivity implies that A 

is riskier than C. 



Indexer Page 4 

 

Let us consider loan 285 which has LTV = 48 and loan 318 which has FICO = 803. Which 

is riskier? “Apples and oranges!”, you cry, and you are right that there’s no easy 

comparison with just this information. So we bring in the comparable information and 

fill in a little table. 

 

Loan No. LTV FICO 

285 48 655 

318 92 803 

 

Whether we use a carefully researched table of risk or mere hunch, we may suppose 

loan 285, with the lower LTV, is less risky than loan 318. And loan 318, having higher 

FICO, is less risky than loan 285. Again, we have no easy comparison. 

 

 

We might suppose our difficulty lies in LTV being riskier when the number is larger 

and FICO being riskier when the number is smaller. This confuses the mind. If we get 

them arranged in the same direction, and applying some subjective judgment, we can 

readily choose the riskier. So, we put each on a scale of 0 to 1, with the 0 being least 

risky and the 1 being riskiest.  
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To put the metrics on a convenient scale, we transform the values. (A transformation is 

a mathematical formula that converts one scale to another. Transformations include 

many everyday conversions, such as Celsius to Fahrenheit and currency exchanges.) 

300 we know to be the minimum of standard FICO, and 850 the maximum. If we 

acquired the loan from another bank, and FICO got lost in the system migration, and 

we don’t know the FICO, then we can assume the worst and use FICOmin. 

FICOmin = 300, FICOmax = 850 

And for LTV, we need not consider less than zero, and if LTV exceeds 200 after a crash 

in property values, then we can call it 200. 

LTVmin = 0, LTVmax = 200 

And we transform our metrics by the formula 

y(i) = (x(i) – M(lo)) / (M(hi) – M(lo)) 

where  

y(i) = the transformed metric for loan i 

x(i) = the observed metric for loan i 

M(hi) = the maximum risk value of the metric 

M(lo) = the minimum risk value of the metric 

(These linear transformations make the explanation simpler, though in practice we may 

wish to use modified or non-linear tranformations.) 

 

orig 
data 

  

transformed 
metrics 

 

extreme 
values   

Loan 

No. 
LTV FICO yLTV yFICO   LTV FICO 

285 48 655 0.24 0.35 min 0 300 

318 92 803 0.46 0.09 max 200 850 
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Now when we diagram our loans, the risky ones lie in the northeast of the graph, and 

the ones nearest the origin (0,0) are the least risky. But if we have two loans about the 

same distance from the origin, which is riskier? We can draw a line from 0.6 on the LTV 

axis to 0.6 on the FICO axis, but who is to say these are comparable values? Are all the 

loans on that line of equal risk? Or equal utility?  

If we have some aversion to risk, then we would want more-than-moderately reduced 

yFICO (transformed FICO) to more than compensate us for moderately increased yLTV 

(transformed LTV) from 0.5 to 0.6. Risk aversion implies a curve bellied toward the 

point of minimal risk (0,0). 

Let’s consider the circle 

r^2 = (yLTV – 1)^2 + (yFICO – 1)^2 

where yLTV is the transformed LTV and yFICO is the transformed FICO score. The 

point of supreme risk SR=(1,1) is the center of the circle and all the points on this circle 

are equally distant from that most risky point. 

Then the Pythagorean distance of loan n from SR, the riskiest point of all, is  

d(i) = sqrt((yLTV(i) – 1)^2 + (yFICO(i) – 1)^2 ) 
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where  

 

d(i) is the distance metric of loan n from (1,1) 

yLTV(i) is the transformed LTV of loan i 

yFICO(i) is the transformed FICO of loan i 

 If we perform the calculation, we find that loan 285 has d(285) = 1.00, and loan 318 has 

d(318) = 1.06. Loan 318 is one of (hypothetically) many loans that have the same risk 

index of 1.06, and which lie with loan 318 on a curve which is everywhere a distance of 

1.06 from SR. 

 

 

In the diagram above, every point on the blue curve is a distance of 1.00 to the orange 

point of supreme risk SR=(1,1), where every metric takes its maximum risk value. Every 

point on the red curve is a distance of 1.06 from SR. By our assumptions and formulae, 

every point on the red curve is less risky than any point on the blue curve. 

Note: We use a circle here because the curve reflects a degree of risk aversion. A point 

with moderate scores on all metrics will lie further from SR (less risky) than one with an 

extremely low (risky) score on one of the metrics. Also, we use a circle for its relatively 

simple shape that serves as a first approximation to the ideal. However, more deeply (or 

more shallowly) bowed curves, or other shapes, might better suit our aims.    
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So, we would trade Loan 285 for Loan 318 to get the benefit of lesser risk. But we 

wouldn’t trade Loan 318 for Loan 285, unless we could get some additional 

compensation, such as a higher interest rate, to compensate us for the increased risk. 

The distance metric d(i) serves us as a measure of risk. We can think of the loan with the 

higher-magnitude d(i) as being more risky. And a scale of 0 to 1 will be easier to work 

with than a scale of 0 to the square root of 2 (the Pythagorean distance from (0,0) to (1,1) 

and the highest possible value of d(i) using two transformed metrics). So, we transform 

d(i) to a scale of 0 to 1. 

 

Then our risk index is 

yd(i) = ( d(i) – sqrt(2) ) / ( 0 – sqrt(2) ) = 1 – d(i) / sqrt(2) 

orig 
data 

  

calculated 
risk 

 

 

Loan 

No. 
LTV FICO D 

Risk 

Index 

(yd) 

indication 

285 48 655 0.997 0.295 
Higher 

risk 

318 92 803 1.062 0.249 
Lower 

risk 

 

If hypothetical loans 285 and 318 had the same rate of interest or return, and if we had 

an opportunity to swap one for the other, then we would prefer to give up 285 and keep 

318.  

Sensitivity Analysis 

 
LTV FICO 

Risk 
Index 

yd 
 

yLTV yFICO d 

Loan A 70 750 0.26 
 

0.3500 0.1818 1.0450 

Loan B 70 783 0.23 
 

0.3500 0.1218 1.0926 

Loan C 55 750 0.23 
 

0.2750 0.1818 1.0932 
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Sensitivity analysis brings us back to a central question: What is the tradeoff between 

FICO and LTV? Here we need a contribution of experienced judgment or statistical 

analysis to calibrate our index. Testing the sensitivity of our formulation, we find the 

fairly dramatic change in LTV from 70 to 55 has the same impact on the risk index yd as 

a less dramatic 33-point increase in FICO. But we can substitute S-curve transformations 

of LTV and FICO, replacing linear transformations, for better practical use.  
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S-Curve Transformation 

We might substitute an S-shaped curve for the linear transformation we have used for 

LTV, so that a 10-point change in LTV in the middle range 50-100 will have more 

significance than changes nearer the tails. And we similarly might use an S-curve to 

emphasize the middle range of FICO between 620 and 790.   

There are many ways to create and graph an S-curve. The graph that looks something 

like the letter S gives the S-curve its name. The S-curve transforms a value on the 

horizontal axis to a value on the vertical axis. Where it becomes steep in the middle 

range is the interesting part.  

The equivalent before-and-after graph shows how the S-curve transforms a value on the 

left axis to a value on the right axis. Hypothetical example: 

 

 

yv 0.0500

yu 0.9500

xv 0.4000

xu 0.8000

INPUTS
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Here we present one way to create an S-curve. We will go through the algebra for 

completeness. The algebra isn’t essential for understanding, and many readers may 

wish to skip to the picture. (I probably would), or to the next section. We will develop a 

general formula for a S-curve in the x-y plane, so that, given a value of x, we can 

calculate the corresponding value of y.  

We want the S-curve to map a value of x, where 0 <= x <= 1 to a value of y, where 0 <= y 

<= 1. If x = 0, then y = 0, or nearly so, and if x = 1, then y = 1, or nearly so. As x increases 

from 0 to 1, we want y to increase slowly at first, so that y remains not much more than 

zero, then y should increase rapidly in the middle range until it is almost equal to 1, and 

as x approaches 1, y also increases slowly to 1. 

1. y = exp(a + b*x) / (1 + exp(a + b*x)), General Formula for S-curve 

Applying algebraic manipulations to the General Formula… 

 

y*(1+exp(a+b*x)) = exp(a+b*x) 

0 = exp(a+b*x) - y - y*exp(a+b*x) 

0 = ( 1 - y ) * exp(a+b*x) – y 

y = ( 1 - y ) * exp(a+b*x) 

ln(y) = ln(1-y) + a + b*x 

 

…, we derive the equivalent 

2. 0 = ( -ln(y) + ln(1-y) ) + a + b*x 

Let us here define two distinct “shaping” points through which the curve must pass: 

 

U:(xu,yu), V:(xv,yv).  

 

That is, when the value before the S-curve transformation is xu, then the value after 

transformation is yu. And when the value before the S-curve transformation is xv, then 

the value after transformation is yv. We want the curve to pass through these points. 

Points U and V shape the S-curve to emphasize the sensitive middle portion of the 

range of x-values.  
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We may suppose, arbitrarily, that point V lies on the curve at about the place where the 

rapidly rising middle range begins, and U lies at the place where the curve levels off as 

x approaches 1. We define two variables of convenience u and v.  

3. Let u = -ln(yu) + ln(1 – yu) 

4. Let v = -ln(yv) + ln(1 – yv) 

Then we have two constraints: 

5. 0 = u + a + b*xu 

6. 0 = v + a + b*xv 

We solve for b from 5 and 6: 

7. 0 = u – v + b*( xu – xv ) 

8. b = -( u – v ) / ( xu – xv ) 

We solve for a from 6 and 8: 

9. a = -v – b*xv 

So, we derive u and v from our chosen target values of yu and yv, using equations 3 

and 4. Then we calculate a and b using equations 8 and 9.  

Now that we have values for variables a and b, and having our General Formula 

(equation 1, above), we can create an S-curve for LTV. SyLTV will be our revised 

transformation of LTV. When LTV is less than 50, we think the risk is very low and so 

SyLTV is near zero. When LTV is greater than 100, we think the risk is very high and so 

SyLTV is near 1. The level of risk changes considerably as LTV varies between 50 and 

100. 

 

yv 0.0500

yu 0.9500

xv 0.2500

xu 0.5000

LTV
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LTV x (yLTV) SyLTV LTV x (yLTV) SyLTV 

0.0 0.0000 0.0001 100.0 0.5000 0.9500 

10.0 0.0500 0.0005 110.0 0.5500 0.9840 

20.0 0.1000 0.0015 120.0 0.6000 0.9950 

30.0 0.1500 0.0050 130.0 0.6500 0.9985 

40.0 0.2000 0.0160 140.0 0.7000 0.9995 

50.0 0.2500 0.0500 150.0 0.7500 0.9999 

60.0 0.3000 0.1460 160.0 0.8000 1.0000 

70.0 0.3500 0.3569 170.0 0.8500 1.0000 

80.0 0.4000 0.6431 180.0 0.9000 1.0000 

90.0 0.4500 0.8540 190.0 0.9500 1.0000 

100.0 0.5000 0.9500 200.0 1.0000 1.0000 

 

Having our General Formula, we can create an S-curve for FICO. SyFICO will be our 

revised transformation of FICO. When FICO is greater than 790, we think the risk is 

very low and so SyFICO is near zero. When FICO is less than 620, we think the risk is 

very high and so SyFICO is near 1. The level of risk changes considerably as FICO 

varies between 620 and 790. (Since a larger FICO value corresponds with lower risk 

(SyFICO), the before-and-after graph flips.) 
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FICO x (yFICO) SyFICO FICO x (yFICO) SyFICO 

850.0 0.0000 0.0065 575.0 0.5000 0.9891 

822.5 0.0500 0.0168 547.5 0.5500 0.9958 

795.0 0.1000 0.0424 520.0 0.6000 0.9984 

767.5 0.1500 0.1029 492.5 0.6500 0.9994 

740.0 0.2000 0.2293 465.0 0.7000 0.9998 

712.5 0.2500 0.4356 437.5 0.7500 0.9999 

685.0 0.3000 0.6668 410.0 0.8000 1.0000 

657.5 0.3500 0.8384 382.5 0.8500 1.0000 

630.0 0.4000 0.9308 355.0 0.9000 1.0000 

602.5 0.4500 0.9721 327.5 0.9500 1.0000 

575.0 0.5000 0.9891 300.0 1.0000 1.0000 

 

  

yv 0.0500

yu 0.9500

xv 0.1091

xu 0.4181

FICO
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Sensitivity Analysis with S-Curve Transformation 

Recalling the definitions of our terms,  

 

SyFICO is the FICO score, transformed through a S-curve and expressed on a scale of 0 

(least risky) to 1 (most risky), 

SyLTV is the loan-to-value ratio, transformed through a S-curve and expressed on a 

scale of 0 to 1,  

Sd is the Pythagorean distance of our point (SyFICO,SyLTV) from (1,1), the riskiest 

point, 

Syd is our risk index, which restates Sd on a scale of 0 (least risky) to 1 (most risky). 

 

 
LTV FICO 

Risk 
Index 
Syd 

 
SyLTV SyFICO Sd 

Loan A 70 750 0.26 
 

0.3569 0.1739 1.0470 

Loan B 70 783 0.20 
 

0.3569 0.0629 1.1366 

Loan C 55 750 0.13 
 

0.0866 0.1739 1.2316 

 

We use the initial “S” to indicate the effect of the S-curve transformation. Sensitivity 

analysis brings us back to a central question. We see that the S-curve transformation 

leads us to identify B as the riskier of loans B and C, a 33-point increase in FICO having 

a little less value than a 15-point difference in LTV. And it clearly distinguishes Loan A 

as significantly more risky than either B or C. Bear in mind that we present these 

hypothetical examples to illustrate use of the method. Study and consultation might 

critically inform the identifying of suitable transformations for raw FICO and LTV. 
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Example of Calculation 

This chart shows the risk/reward relation for the Residential loans, for the entire 

portfolio, and for new loans recently produced. The risk index is calculated from LTV 

and FICO, using refreshed values for the portfolio, and original values for the new 

production. The averages are simple arithmetic averages. 

 

Questions we might ask include: 

1. Consider the portfolio loans with interest greater than 6 per cent and risk index 

less than 0.2. Are these candidates for refinancing? 

2. Regarding the portfolio loans with interest rates of 2 per cent to 7 per cent, for 

each level of interest rate we have many loans at each level of risk. But wouldn’t 

we prefer that the loans with higher risk would have a higher interest rate? 

3. Regarding both the new production and the entire portfolio, shouldn’t we see a 

pattern in which the loans lie near a line rising from southwest to northeast?   
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And recalling our two loans, applying the S-curve transformations, 

 

orig 
data 

  

calculated 
risk 

 

 

Loan 

No. 
LTV FICO Sd 

Risk 

Index 

(Syd) 

indication 

285 48 655 0.972 0.31 
Same risk 

level 

318 92 803 0.975 0.31 
Same Risk 

level 
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Alternate Formulations 

It’s reasonable to consider using a statistical regression model on two (or more) 

independent variables (FICO and LTV, for example) to  calculate a probability of 

delinquency or of default. A statistical model avoids the problem of willful or unwitting 

bias and flaws in the expert judgment required to calibrate the input metrics and 

transformations used in the S-curve. While “statistical model” covers a vast range of 

options, we would suppose, generally, that the statistical model would require a 

population with a history, so that one could observe some default or delinquency 

events. Questions arise regarding acquiring a population of sufficient size, the length of 

time required to observe the events, the minimum number of events to give confidence 

in the outcome, the relative independence of members of the population, consistency of 

the studied population with current conditions, appropriate transformations of 

independent variables, and others. Then, we will want to express the implications of the 

statistical model in some form both suitable for comparing the relative riskiness of 

different individual accounts, and facilitating actual or hypothetical trading of one risky 

asset for another.   

The risk index developed in this document combines numeric metrics (however 

derived) to yield a single numeric metric, suitable for trading value for risk. The basis of 

combination is Pythagorean distance, a notion within conceptual reach for a broad 

range of readers. This index can depend on the user’s knowledge and judgment, which 

makes it practical when problems arise in gathering a suitably tempered history. A 

multivariable index might (or might not) include statistical models among its variables. 

A weakness of this index is that it ignores the questions that immediately arise in the 

statistical approach. (The cynic might say this solves the problem of unreliable seat belts 

by not using them.) But this is also its strength.  

The index developed in this documents is numeric. One would have to convert non-

numeric inputs, such as geographic location, language of borrower, etc., to a numeric 

form by such method as one may choose. 
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So What? The Implications 

We may rightly suppose that no mathematical formula can capture all the elements of 

the competitive landscape, of reward and of risk. In the same sense, navigating from 

Portland to Chicago is something more than tracing a line on a map. However, objective 

measures of risk can clarify assumptions, supplement experienced judgment and 

facilitate decisions.  

First, with the risk index, we can adjust our marketing and underwriting policies to 

achieve measured comparability of perceived risk for loans having the same rates of 

interest, or adjust our rates of interest to levels more appropriate for the risks we choose 

to take. We can trade risk for money. 

Second, not only can we compare two loans, but we can also compare the risk index 

Syd(i) of a loan to the average risk index SYD(I) of a portfolio. Further, we can compare 

the risk index of one portfolio (say, all the loans in our portfolio) with the risk index of 

another portfolio (say, the industry). 

Third, we can examine multiple portfolios to see which are best compensated for the 

risk taken. We can consider the relation between risk and reward.  

Fourth, we can calculate the tradeoff between LTV and FICO, or among other metrics. 

Fifth, with a risk index, we can find some marketing opportunities in the risk/reward 

relation that otherwise might go unnoticed.   
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